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Axially Loaded Rigid Bar with a

Stability of Columns (or Struts) '

Pin and

a Linear Elastic Support
a) Equilibrium (Euler) Method

@ Studying the equilibrium of
an adjacent configuration (to
the original one|
Spring force = kV
where k = spring stiffness

@ Moments about the support
atb

- Disturbing moment = Pv
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Axially Loaded Rigid Bar with a
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Pin and

a Linear Elastic Support

a) Equilibrium (Euler) Method

@ Moments about the support
atb

- Disturbing moment = Pv
- Restoring moment = kvL

@ Three different states of
equilibrium can be identified:
- Stable equilibrium P<kL
- Unstable equilibrium P>kL
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- Neutral equilibrium P = kL
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Axially Loaded Rigid Bar with a Pin and
a Linear Elastic Support =

a) Equilibrium (Euler) Method K

¢ Neutral equilibrium
corresponds to the

onset of buckling - b
presence of two p
equilibrium unstable
states: e i
- Original - unstable Per =K 1€ stato
- Deformed - stable ulBG
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a Linear Elastic Support

a) Equilibrium (Euler) Method
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Axially Loaded Rigid Bar with a Pin and

- This is referred to as

with the neutral
equilibrium stateis

(or Euler) buckling load.

bifurication of equilibrium.

- The value of P associated

referred to as bifurcation

Py
L:nﬂltﬂn
ullibrivm

=]

julﬂhl‘ll.rm "

neuiral

Baullibrium

Axiall
a Linear Elastic Support
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W3= vertical displacement
of point a = L 1-cosf)

Stability of Columns [or Struts) '

y Loaded Rigid Bar with a Pin and

PP

= — _— ﬂz L ] = 1 2
L{1-(1 ) +.)|=1L0 P
Aw = work done by the [ unstabte
axial force P = F'Wa _'qu“tm"umﬁpqullih:ium
T z F‘ﬁ s kl- c 1"""':‘"-"
a2l 0 ullibeium
zPL 0 j—rv

Stability of Columns [or Struts) ’
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Axially Loaded Rigid Bar with
a Linear Elastic Support

b) Energy Method

The three different
equilibrium states
correspond to:

AU>AW - stable equilibrium
AU <AW - unstable equilibrium
Au=Aw - neutral equilibrium
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Axially Loaded Rigid Bar with a Pin and

b) Energy Method ”
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Characteristic Equation (Quadratic Equation in P)
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d) Energy Method
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d) Energy Method

strain energy in springs
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d) Energy Method
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Characteristic Equation [Quadratic in P):
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Two-Degrees of Freedom System

Equilibrium Method
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Two-Degrees of Freedom System

Characteristic Equation

| P2-akLPex2L2=0 |

:... IU'1 s

= c . b i
o 3
Energy Method “ L—spe—1L—

N

| We=L{1-cos 04}t L[1~cosB;) | v




Stability of Columns [or Struts) '

Two-Degrees of Freedom Svstem

Stability of Columns [or Struts) '

U = strain energy in springs

Two-Degrees of Freedom System
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Characteristic Equation
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Axially Loaded Slender Column with Simply
Supported Ends

Equilibrium Method 3
Studying the equilibrium of a portion F
in an adjacent configuration |—~ H
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Axially Loaded Slender Column with Simply
Supported Ends
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which is a homogeneous
ordinary differential
equation.
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Boundary Conditions
Atz =0 andL , v=0
Homogeneous boundary conditions. z

— P
ity

differential equation is: [ il
P L

v= ﬁsmv’— z+Bcos,/ o 2 L 8

where A and B are constants. v
Applying the boundary conditions

Atz=0, v=0—— B=0

Atz=L,v=0—— A sin

T

General solution of the

P
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Applying the boundary conditions
Atz=0, v=0 — B=0
Atz=L, v=0—-A.5In.,.f L El
EitherA= 0—v=0 no hucklmg
or,
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Either A= 0—=v =0 no buckling
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Higher buckling loads

or, |sin -vfll EI L=0— .\f P L=nn ZE| Puy 4Py 9P,
n= .2 P F =4 “—2
where nis an integer [n=1,2,3.. | L i >
=2
p = N2 El n=3—p=g=Etl
L2 L? n=iggfn=2 (|n=3
Lowest critical load corresponds v = A sin 12
ton=1. L
2
P, = ?ITE—I T -
Pcr  4Pcr, 9Pcr Stability of Columns [or Struts) '
Y
1 v=Asin “Ez
Mote that the homogeneous B
differential and the
n=1 n= n=3 homogeneous boundary
conditions characterize
an eigenvalue problem. The
values of 4/ ,5 for nontrivial
solution (v #0) are called
eigenvalues, and the
i b associated v's are called Pe, 4Pl 9P,
Per 4Pcr 9P¢r eigenfunctions.




Stability of Columns [or Struts) ) Z
Energy Method W = L-L* waP
Axial shortening (displacement) of the column is
given by A — B kl d
VL lf.,s 1 I\ ,Buckle
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] e ﬁw= work done by the external force P
Anete 2 =P [*(dv)?
(ds)? = (dz)? + (dv) 2 [ Gz) ¢z [l Ty
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which satisfies the boundary conditions of v=0

Assuming |V =Asin L 4 atz=0andz=L
which satisfies the boundary conditions of v=0 AW = TFZP ne A2
1 atz=0andz=L 1 L 1
Tl _4a2
:I ﬁW:ﬂnzﬁz :I AU .4|_al oA
I 4L i
b AU = T4E| n4A2 B ] Bifurcation buckling load
VTEL ] corresponds to: | AU = AW
n?z2El
or |(Pg= =
Critical Stresses in Columns ' Eccentrically Loaded Columns '
If at buckling the material of the column is stressed If the column is loaded eccentrically - the load is
within the elastic range, then displaced at distance e from the centerline. Then
= Per x
ﬁi:r."' A W=Lﬂ P MI—P{‘J“'
2 T  Buckled d2v
=" El /A L L* {pnsltiun =-El
Euﬂ-Arzwherer-radius of v,V l l or
gyration of the cross section. = dzv
2 2
Tt [0 = e dz El
(L/r) which is a nonhomogeneous ordinary
where L/r is called the slenderness ratio. differential equation.
Eccentrically Loaded Columns !
i~ —
4 Boundary Conditions
P e i
Atz=0,L,v=0
homogeneous boundary conditions.
T Gener‘al :9Iution of the differential
'.‘ Di SPI BCBd Equatlﬂn IS:
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Applying the boundary conditions, then
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Eccentrically Loaded Columns l Eccentrically Loaded Columns '

—
Axially Loaded Slender Columns with General End
Restraints

If the governing homogeneous differential equation
for an axially loaded column, with constant EI

i
0

For certain values of P, the denominator

-0 o P L
sin \/ % L| becomes zero, and the dz? " El v=0i
is diff i ice with
deflection becomes infinitely large. rifpeﬁﬁgtff:eﬁgwigg
The corresponding values of F are the fourth-order differential
critical buckling loads. equation is obtained:
2
ﬂ . [ i 29 0[]
dz* El dz?

Eccentrically Loaded Columns '

The general solution of the differential equation is:

haing b 1.
v Asmv Eiz+B-::¢:|s\./ﬂz+{.‘:z+D ]

where A, B, C, and D are z
constants, to be determined .
from four boundary P

conditions - two at each 7
end of the column.

-'. Displaced

The boundary conditions }'/p asition

specify:
displacement v

slope [or rotation) g-: Y

Effect of End Restraints on
Buckling Loads
- b —
N lz|~ Basic Case - simply supported coumn
The boundary conditions P (Euler buckling load) 2
specify: F Per= 'n:_EI
....... L

displacement wv
P Displaced

position

slope (or ratation) %"

b bending moment

- L%
shearing force —l { _I
d3v '

Vy=-Elgzs




Effect of End Restraints on
Buckling Loads

End constraints can be accounted for by finding
the effective length Le [length of a simply
supported column) that would have the same
critical load as that of the original column.
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Effect of End Restraints on
Buckling Loads

= Z°El
S
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assumes that buckling occurs before yielding
[columns with sufficiently large L, /r |

For small values of Engesser suggested
replacing the Young's modulus |E| by the tangent
modulus E] where
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Inelastic Column Theory .
Columns Subjected to More Than One

Concentrated Load

1. Write the differential
equation for each beam
segment and find the
general solution.

2. Apply both the boundary

conditions at the supports

and the continuity condit

ians

at the points of application

of concentrated loads.

L

Inelastic Column Theory ’

2. Apply both the boundary
conditions at the supports
and the continuity conditions
at the points of application
of concentrated loads.

Inelastic Column Theory .

3. The resulting homogeneous equations in step 2
define the eigenvalue problem, from which the
buckling load can be obtained.
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